8.5 Computing Moments from Samples

Given a Lie group $ G$ (with algebra $ \mathfrak{g}$) and a set of $ N$ samples $ x_{i}\in G$, we can estimate the mean and covariance iteratively. First, any of the samples provides an initial guess for the mean:

$\displaystyle \mu_{0}\leftarrow x_{0}$ (229)

Then, new estimates of the mean and covariance can be computed in terms of deviations in the tangent space:

$\displaystyle v_{i,k}$ $\displaystyle \equiv$ $\displaystyle \ln\left(x_{i}\cdot\mu_{k}^{-1}\right)$ (230)
$\displaystyle \boldsymbol{\Sigma}_{k}$ $\displaystyle \leftarrow$ $\displaystyle \dfrac{1}{N}\sum_{i}\left[v_{i,k}\cdot v_{i,k}^{T}\right]$ (231)
$\displaystyle \mu_{k+1}$ $\displaystyle \leftarrow$ $\displaystyle \exp\left(\dfrac{1}{N}\sum_{i}v_{i,k}\right)\cdot\mu_{k}$ (232)

Iterating these updates should rapidly converge (typically in two or three iterations). Replacing the factor $ \dfrac{1}{N}$ with $ \dfrac{1}{N-1}$ in Eq. 231 yields an unbiased estimate of the covariance.

Ethan Eade 2012-02-16