2.5.1 Sampling

We can encode Gaussian distributions over 3D rotations by representing the mean with an element of $ \mathrm{SO(3)}$ and the covariance as a quadratic form over tangent vectors in $ \mathrm{so(3)}$. More precisely, consider a Gaussian distribution given by mean $ \mathbf{R\in}\mathrm{SO(3)}$ and covariance $ \boldsymbol{\Sigma}\in\mathcal{R}^{3\times3}$. We can draw a sample rotation $ \mathbf{S}$ from the distribution by sampling the zero-mean distribution in the tangent space and left multiplying the mean:


$\displaystyle \boldsymbol{\epsilon}$ $\displaystyle \in$ $\displaystyle \mathcal{N}\left(\mathbf{0},\boldsymbol{\Sigma}\right)$ (38)
$\displaystyle \mathbf{S}$ $\displaystyle =$ $\displaystyle \exp\left(\boldsymbol{\epsilon}\right)\cdot\mathbf{R}$ (39)



Ethan Eade 2012-02-16