4.1 Representation

Elements of the rotation group in two dimensions, $ \mathrm{SO}(2)$, are represented by 2D rotation matrices. Composition and inversion in the group correspond to matrix multiplication and inversion. Because rotation matrices are orthogonal, inversion is equivalent to transposition.


$\displaystyle \mathbf{R}$ $\displaystyle \in$ $\displaystyle \mathrm{SO}(2)$ (90)
$\displaystyle \mathbf{R}^{-1}$ $\displaystyle =$ $\displaystyle \mathbf{R}^{T}$ (91)

The Lie algebra, $ \mathrm{so}(2)$, is the set of $ 2\times2$ skew-symmetric matrices. The single generator of $ \mathrm{so}(2)$ corresponds to the derivative of 2D rotation, evaluated at the identity:

$\displaystyle G=\left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right)$ (92)

An element of $ \mathrm{so}(2)$ is then any scalar multiple of the generator:


$\displaystyle \theta$ $\displaystyle \in$ $\displaystyle \mathbb{R}$ (93)
$\displaystyle \theta G$ $\displaystyle \in$ $\displaystyle \mathrm{so}(2)$ (94)

We will simply write $ \mathrm{\theta\in so}(2)$, and use $ \theta_{\times}$ to represent the skew symmetric matrix $ \theta G$.

Ethan Eade 2012-02-16