4.2 Exponential Map

The exponential map that takes skew symmetric matrices to rotation matrices is simply the matrix exponential over a linear combination of the generators:


$\displaystyle \exp\left(\theta_{\times}\right)$ $\displaystyle \equiv$ $\displaystyle \exp\left(\begin{array}{cc}
0 & -\theta\\
\theta & 0
\end{array}\right)$ (95)
  $\displaystyle =$ $\displaystyle \mathbf{I}+\theta_{\times}+\frac{1}{2!}\theta_{\times}^{2}+\frac{1}{3!}\theta_{\times}^{3}+\cdots$ (96)
  $\displaystyle =$ $\displaystyle \mathbf{I}+\left(\begin{array}{cc}
0 & -\theta\\
\theta & 0
\end...
...3!}\left(\begin{array}{cc}
0 & \theta^{3}\\
-\theta^{3} & 0
\end{array}\right)$ (97)

The resulting elements form the Taylor series expansion of $ \sin\theta$ and $ \cos\theta$:

$\displaystyle \exp\left(\theta_{\times}\right)=\left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right)\in\mathrm{SO(2)}$ (98)

Thus the exponential map yields a rotation by $ \theta$ radians.

The exponential map can be inverted, going from $ \mathrm{SO}(2)$ to $ \mathrm{so}(2)$:


$\displaystyle \mathbf{R}$ $\displaystyle \in$ $\displaystyle \mathrm{SO}(2)$ (99)
$\displaystyle \ln\left(\mathbf{R}\right)=\theta$ $\displaystyle =$ $\displaystyle \arctan\left(\mathbf{R}_{21},\mathbf{R}_{11}\right)$ (100)

Ethan Eade 2012-02-16