6.3 Adjoint

The adjoint is computed from a linear combination of the generators:


$\displaystyle \boldsymbol{\delta}=\left(\begin{array}{ccc}
\mathbf{u} & \boldsymbol{\omega} & \lambda\end{array}\right)^{T}$ $\displaystyle \in$ $\displaystyle \mathrm{sim(3)},\; T=\left(\begin{array}{c\vert c}
\mathbf{R} & \...
...{t}\\
\hline \mathbf{0} & s^{-1}
\end{array}\right)\mathbf{\in}\mathrm{Sim(3)}$ (201)
$\displaystyle T\cdot\exp\left(\boldsymbol{\delta}\right)$ $\displaystyle =$ $\displaystyle \exp\left(\mathrm{Adj}_{T}\cdot\boldsymbol{\delta}\right)\cdot T$  
$\displaystyle \exp\left(\mathrm{Adj}_{T}\cdot\boldsymbol{\delta}\right)$ $\displaystyle =$ $\displaystyle T\cdot\exp\left(\boldsymbol{\delta}\right)\cdot T^{-1}$ (202)
$\displaystyle \mathrm{Adj}_{T}\cdot\boldsymbol{\delta}$ $\displaystyle =$ $\displaystyle T\cdot\left(\sum_{i=1}^{7}\boldsymbol{\delta}_{i}G_{i}\right)\cdot T^{-1}$ (203)
  $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
s\left(\mathbf{R}\mathbf{u}+\mathbf{t}\tim...
...athbf{t}\right)\\
\mathbf{R}\boldsymbol{\omega}\\
-\lambda
\end{array}\right)$ (204)
$\displaystyle \implies\mathrm{Adj}_{T}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c\vert c}
s\mathbf{R} & s\mathbf{t}_{\...
...
\hline \mathbf{0} & \mathbf{0} & 1
\end{array}\right)\in\mathbb{R}^{7\times7}$ (205)



Ethan Eade 2012-02-16