8.1 Sampling

Consider a Lie group $ G$ and its associated Lie algebra vector space $ \mathfrak{g}$, with $ k$ degrees of freedom. We wish to represent Gaussian distributions over transformations in this group. Each such distribution has a mean transformation, $ \mu\in G$, and a covariance matrix $ \boldsymbol{\Sigma}\in\mathbb{R}^{k\times k}$. The algebra corresponds to tangent vectors around the identity element of the group. Thus, it is natural to express a sample $ x$ from the desired distribution in terms of a sample $ \boldsymbol{\delta}$ drawn from a zero-mean Gaussian and the mean transformation $ \mu$:

$\displaystyle \boldsymbol{\delta}$ $\displaystyle \in$ $\displaystyle \mathcal{N}\left(\mathbf{0};\boldsymbol{\Sigma}\right)$ (215)
$\displaystyle x$ $\displaystyle =$ $\displaystyle \exp\left(\boldsymbol{\delta}\right)\cdot\mu$ (216)



Ethan Eade 2012-02-16