8.2 Transforming

This formulation allows convenient transformations of distributions through other group elements using the adjoint. Consider $ x,y\in G$, and the distribution $ \left(x,\boldsymbol{\Sigma}\right)$ with mean $ x$. Consider $ y\cdot\tilde{x},$ where $ \tilde{x}$ is a sample drawn from $ \left(x,\boldsymbol{\Sigma}\right)$:

$\displaystyle \tilde{x}$ $\displaystyle =$ $\displaystyle \exp\left(\boldsymbol{\delta}\right)\cdot x$ (217)
$\displaystyle y\cdot\tilde{x}$ $\displaystyle =$ $\displaystyle y\cdot\exp\left(\boldsymbol{\delta}\right)\cdot x$ (218)
  $\displaystyle =$ $\displaystyle \exp\left(\mathrm{Adj}_{y}\boldsymbol{\delta}\right)\cdot y\cdot x$ (219)

By the definition of covariance,

$\displaystyle \boldsymbol{\Sigma}=\mathrm{E}\left[\boldsymbol{\delta}\cdot\boldsymbol{\delta}^{T}\right]$ (220)

Given a linear transformation $ L$, by linearity of expectation we have:

$\displaystyle \mathrm{E}\left[\left(L\boldsymbol{\delta}\right)\cdot\left(L\boldsymbol{\delta}\right)^{T}\right]$ $\displaystyle =$ $\displaystyle \mathrm{E}\left[L\cdot\boldsymbol{\delta}\cdot\boldsymbol{\delta}^{T}\cdot L^{T}\right]$ (221)
  $\displaystyle =$ $\displaystyle L\cdot\mathrm{E}\left[\boldsymbol{\delta}\cdot\boldsymbol{\delta}^{T}\right]\cdot L^{T}$ (222)
  $\displaystyle =$ $\displaystyle L\cdot\boldsymbol{\Sigma}\cdot L^{T}$ (223)

So we can express the parameters of the transformed distribution:

$\displaystyle y\cdot\tilde{x}\in\mathcal{N}\left(y\cdot x;\:\mathrm{Adj}_{y}\cdot\boldsymbol{\Sigma}\cdot\mathbf{\mathrm{Adj}}_{y}^{T}\right)$ (224)

Thus the mean of the transformed distribution is the transformed mean, and the covariance is mapped linearly by the adjoint.

Ethan Eade 2012-02-16