2.1 Representation

Elements of the 3D rotation group, $ \mathrm{SO}(3)$, are represented by 3D rotation matrices. Composition and inversion in the group correspond to matrix multiplication and inversion. Because rotation matrices are orthogonal, inversion is equivalent to transposition.


$\displaystyle \mathbf{R}$ $\displaystyle \in$ $\displaystyle \mathrm{SO}(3)$ (1)
$\displaystyle \mathbf{R}^{-1}$ $\displaystyle =$ $\displaystyle \mathbf{R}^{T}$ (2)

The Lie algebra, $ \mathrm{so}(3)$, is the set of $ 3\times3$ skew-symmetric matrices. The generators of $ \mathrm{so}(3)$ correspond to the derivatives of rotation around the each of the standard axes, evaluated at the identity:

$\displaystyle G_{1}=\left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0...
...=\left(\begin{array}{ccc} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{array}\right)$ (3)

An element of $ \mathrm{so}(3)$ is then represented as a linear combination of the generators:


$\displaystyle \boldsymbol{\omega}$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{3}$ (4)
$\displaystyle \boldsymbol{\omega}_{1}G_{1}+\boldsymbol{\omega}_{2}G_{2}+\boldsymbol{\omega}_{3}G_{3}$ $\displaystyle \in$ $\displaystyle \mathrm{so}(3)$ (5)

We will simply write $ \mathrm{\boldsymbol{\omega}\in so}(3)$ as a 3-vector of the coefficients, and use $ \boldsymbol{\omega}_{\times}$ to represent the corresponding skew symmetric matrix.

Ethan Eade 2012-02-16