3.4 Jacobians

Consider $ C=\mathbf{\left(\begin{array}{c\vert c}
\mathbf{R} & \mathbf{t}\\
\hline \mathbf{0} & 1
\end{array}\right)\in}\mathrm{SE(3)}$ and $ \mathbf{x}\in\mathcal{R}^{3}$. The transformation of vector $ \mathbf{x}$ by C is given by multiplication:


$\displaystyle \mathbf{y}$ $\displaystyle =$ $\displaystyle f(C,\mathbf{x})=\mathbf{\left(\begin{array}{c\vert c}
\mathbf{R} ...
...nd{array}\right)}\cdot\left(\begin{array}{c}
\mathbf{x}\\
1
\end{array}\right)$ (83)
  $\displaystyle =$ $\displaystyle \mathbf{R}\cdot\mathbf{x}+\mathbf{t}$ (84)

Then differentiation by the vector is straightforward, as $ f$ is linear in $ \mathbf{x}$:

$\displaystyle \dfrac{\partial\mathbf{y}}{\partial\mathbf{x}}=\mathbf{R}$ (85)

Just as with $ \mathrm{SO(3)}$, differentiation by the transformation parameters is performed by left multiplying the product by the generators (here with their last rows removed):


$\displaystyle \dfrac{\partial\mathbf{y}}{\partial C}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c\vert c}
G_{1}\mathbf{y} & \cdots & G_{3}\mathbf{y}\end{array}\right)$  
  $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\mathbf{I} & -\mathbf{y}_{\times}\end{array}\right)$ (86)

Again, differentiation of a product of transformations is trivial given the adjoint:


$\displaystyle C$ $\displaystyle \equiv$ $\displaystyle C_{1}\cdot C_{0}$ (87)
$\displaystyle \dfrac{\partial C}{\partial C_{0}}$ $\displaystyle =$ $\displaystyle \dfrac{\partial}{\partial\mathbf{\boldsymbol{\delta}}}\left[C_{1}\cdot\exp\left(\mathbf{\boldsymbol{\delta}}\right)\cdot C_{0}\right]$ (88)
  $\displaystyle =$ $\displaystyle \mathrm{Adj}_{C_{1}}$ (89)

Ethan Eade 2012-02-16