6.1 Representation

Similarity transformations are combinations of rigid transformation and scaling. The group of similarity transforms in 3D space, $ \mathrm{Sim}(3)$, has a nearly identical representation to $ \mathrm{SE}(3$), with an additional scale factor:


$\displaystyle \mathbf{R}$ $\displaystyle \in$ $\displaystyle \mathrm{SO}(3),\:\mathbf{t}\in\mathbb{R}^{3},\; s\in\mathbb{R}$ (133)
$\displaystyle T$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\mathbf{R} & \mathbf{t}\\
\hline \mathbf{0} & s^{-1}
\end{array}\right)\in\mathrm{Sim}(3)$ (134)

Again, group operations map are isomorphic with matrix operations:


$\displaystyle T_{1},T_{2}$ $\displaystyle \in$ $\displaystyle \mathrm{Sim}(3)$ (135)
$\displaystyle T_{1}\cdot T_{2}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\mathbf{R}_{1} & \mathbf{t}_{1}\\
...
...bf{R}_{2} & \mathbf{t}_{2}\\
\hline \mathbf{0} & s_{2}^{-1}
\end{array}\right)$ (136)
  $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\mathbf{R}_{1}\mathbf{R}_{2} & \mat...
...mathbf{t}_{1}\\
\hline \mathbf{0} & (s_{1}\cdot s_{2})^{-1}
\end{array}\right)$ (137)
$\displaystyle T_{1}^{-1}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\mathbf{R}_{1}^{T} & -s_{1}\mathbf{R}_{1}^{T}\mathbf{t}\\
\hline \mathbf{0} & s_{1}
\end{array}\right)$ (138)

The group action on 3D points also encodes scaling by $ s$:


$\displaystyle \mathbf{x}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{cccc}
x & y & z & w\end{array}\right)^{T}\in\...
...bb{RP}^{3}\quad(\lambda\mathbf{x}\simeq\mathbf{x}\:\forall\lambda\in\mathbb{R})$  
$\displaystyle T\cdot\mathbf{x}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\mathbf{R} & \mathbf{t}\\
\hline \mathbf{0} & s^{-1}
\end{array}\right)\cdot\mathbf{x}$ (139)
  $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
\mathbf{R}\left(\begin{array}{ccc}
x & y & z\end{array}\right)^{T}+w\mathbf{t}\\
s^{-1}w
\end{array}\right)$ (140)
  $\displaystyle \simeq$ $\displaystyle \left(\begin{array}{c}
s\left(\mathbf{R}\left(\begin{array}{ccc}
x & y & z\end{array}\right)^{T}+w\mathbf{t}\right)\\
w
\end{array}\right)$ (141)

In the typical case with $ w=1$, this corresponds to rigid transformation followed by scaling.

The generators of the Lie algebra $ \mathrm{sim(3)}$ are identical to those of $ \mathrm{se(3)}$ (Eq. 58), with the addition of a generator corresponding to scale change:

$\displaystyle G_{7}=\left(\begin{array}{cccc} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -1 \end{array}\right)$ (142)

An element of $ \mathrm{sim}(3)$ is represented by multiples of the generators:


$\displaystyle \left(\begin{array}{cc}
\mathbf{u} & \boldsymbol{\omega}\end{array}\lambda\right)^{T}$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{7}$ (143)
$\displaystyle \mathbf{u}_{1}G_{1}+\mathbf{u}_{2}G_{2}+\mathbf{u}_{3}G_{3}+\bold...
...1}G_{4}+\boldsymbol{\omega}_{2}G_{5}+\boldsymbol{\omega}_{3}G_{6}+\lambda G_{7}$ $\displaystyle \in$ $\displaystyle \mathrm{sim}(3)$ (144)

For convenience, we write $ \left(\begin{array}{cc}
\mathbf{u} & \boldsymbol{\omega}\end{array}\lambda\right)^{T}\in\mathrm{sim}(3)$, with multiplication against the generators implied.

Ethan Eade 2012-02-16