2.4 Jacobians

Consider $ \mathbf{R\in}\mathrm{SO(3)}$ and $ \mathbf{x}\in\mathcal{R}^{3}$. The rotation of vector $ \mathbf{x}$ by matrix $ \mathbf{R}$ is given by multiplication:

$\displaystyle \mathbf{y}=f(\mathbf{R},\mathbf{x})=\mathbf{R}\cdot\mathbf{x}$ (26)

Then differentiation by the vector is straightforward, as $ f$ is linear in $ \mathbf{x}$:

$\displaystyle \dfrac{\partial\mathbf{y}}{\partial\mathbf{x}}=\mathbf{R}$ (27)

Differentiation by the rotation parameters is performed by implicitly left multiplying the rotation by the exponential of a tangent vector and differentiating the resulting expression around the origin. This is equivalent to left multiplying the product by the generators.


$\displaystyle \dfrac{\partial\mathbf{y}}{\partial\mathbf{R}}$ $\displaystyle =$ $\displaystyle \dfrac{\partial}{\partial\mathbf{\boldsymbol{\omega}}}\vert{}_{\m...
...\left(\exp\left(\boldsymbol{\omega}\right)\cdot\mathbf{R}\right)\cdot\mathbf{x}$ (28)
  $\displaystyle =$ $\displaystyle \dfrac{\partial}{\partial\mathbf{\boldsymbol{\omega}}}\vert{}_{\m...
...\exp\left(\boldsymbol{\omega}\right)\cdot\left(\mathbf{R}\cdot\mathbf{x}\right)$ (29)
  $\displaystyle =$ $\displaystyle \dfrac{\partial}{\partial\mathbf{\boldsymbol{\omega}}}\vert{}_{\m...
...dsymbol{\omega}}=\mathbf{0}}\exp\left(\boldsymbol{\omega}\right)\cdot\mathbf{y}$ (30)
  $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c\vert c}
G_{1}\mathbf{y} & G_{2}\mathbf{y} & G_{3}\mathbf{y}\end{array}\right)$ (31)
  $\displaystyle =$ $\displaystyle -\mathbf{y}_{\times}$ (32)

Differentiation of a product of rotations is performed by the same method. The differentation by the tangent space element $ \mathbf{\boldsymbol{\omega}}$ is always performed around $ \mathbf{\boldsymbol{\omega}}=\mathbf{0}$, and the adjoint is employed to shift the tangent vector left. The result is simple:


$\displaystyle \mathbf{R}$ $\displaystyle \equiv$ $\displaystyle \mathbf{R}_{1}\cdot\mathbf{R}_{0}$ (33)
$\displaystyle \dfrac{\partial\mathbf{R}}{\partial\mathbf{R}_{0}}$ $\displaystyle =$ $\displaystyle \dfrac{\partial}{\partial\mathbf{\boldsymbol{\omega}}}\left[R_{1}\cdot\exp\left(\mathbf{\boldsymbol{\omega}}\right)\cdot R_{0}\right]$ (34)
  $\displaystyle =$ $\displaystyle \dfrac{\partial}{\partial\mathbf{\boldsymbol{\omega}}}\left[\exp\...
...bf{R}_{1}}\cdot\mathbf{\boldsymbol{\omega}}\right)\cdot R_{1}\cdot R_{0}\right]$ (35)
  $\displaystyle =$ $\displaystyle \mathrm{Adj}_{\mathbf{R}_{1}}$ (36)
  $\displaystyle =$ $\displaystyle \mathbf{R}_{1}$ (37)

Ethan Eade 2012-02-16