5.2 Exponential Map

As for all Lie groups in this document, the exponential map from $ \mathrm{se}(2)$ to $ \mathrm{SE}(2)$ is the matrix exponential on a linear combination of the generators:


$\displaystyle \boldsymbol{\delta}=\left(\begin{array}{cc}
\mathbf{u} & \theta\end{array}\right)$ $\displaystyle \in$ $\displaystyle \mathrm{se}(2)$ (112)
$\displaystyle \exp\left(\boldsymbol{\delta}\right)$ $\displaystyle =$ $\displaystyle \exp\left(\begin{array}{c\vert c}
\theta_{\times} & \mathbf{u}\\
\hline \mathbf{0} & 0
\end{array}\right)$ (113)
  $\displaystyle =$ $\displaystyle \mathbf{I}+\left(\begin{array}{c\vert c}
\theta_{\times} & \mathb...
...theta_{\times}^{2}\mathbf{u}\\
\hline \mathbf{0} & 0
\end{array}\right)+\cdots$ (114)

The rotation block is the same as for $ \mathrm{SO}(2)$, but the translation component is a different power series:


$\displaystyle \exp\left(\begin{array}{c\vert c}
\theta_{\times} & \mathbf{u}\\
\hline \mathbf{0} & 0
\end{array}\right)$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\exp\left(\theta_{\times}\right) & \mathbf{V}\mathbf{u}\\
\hline \mathbf{0} & 1
\end{array}\right)$ (115)
$\displaystyle \mathbf{V}$ $\displaystyle =$ $\displaystyle \mathbf{I}+\frac{1}{2!}\theta_{\times}+\frac{1}{3!}\theta_{\times}^{2}+\cdots$ (116)

We split the terms by odd and even powers:


$\displaystyle \mathbf{V}$ $\displaystyle =$ $\displaystyle \sum_{i=0}^{\infty}\left[\dfrac{\theta_{\times}^{2i}}{(2i+1)!}+\dfrac{\theta_{\times}^{2i+1}}{(2i+2)!}\right]$ (117)

Two identities (easily confirmed by induction) are useful for collapsing the series:


$\displaystyle \theta_{\times}^{2i}$ $\displaystyle =$ $\displaystyle (-1)^{i}\theta^{2i}\cdot\left(\begin{array}{cc}
1 & 0\\
0 & 1
\end{array}\right)$ (118)
$\displaystyle \theta_{\times}^{2i+1}$ $\displaystyle =$ $\displaystyle (-1)^{i}\theta^{2i+1}\cdot\left(\begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right)$ (119)

Direct application of the identies yields a reduced expression for $ \mathbf{V}$ in terms of diagonal and skew-symmetric components:


$\displaystyle \mathbf{V}$ $\displaystyle =$ $\displaystyle \sum_{i=0}^{\infty}(-1)^{i}\theta^{2i}\left[\dfrac{1}{(2i+1)!}\cd...
...{(2i+2)!}\cdot\left(\begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right)\right]$ (120)
  $\displaystyle =$ $\displaystyle \left(\sum_{i=0}^{\infty}\dfrac{(-1)^{i}\theta^{2i}}{(2i+1)!}\rig...
...{(2i+2)!}\right)\cdot\left(\begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right)$ (121)

The coefficients can be identified with Taylor expansions:


$\displaystyle \mathbf{V}$ $\displaystyle =$ $\displaystyle \left(1-\frac{\theta^{2}}{3!}+\frac{\theta^{4}}{5!}+\cdots\right)...
...!}+\cdots\right)\cdot\left(\begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right)$ (122)
  $\displaystyle =$ $\displaystyle \left(\dfrac{\sin\theta}{\theta}\right)\cdot\left(\begin{array}{c...
...}{\theta}\right)\cdot\left(\begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right)$ (123)
  $\displaystyle =$ $\displaystyle \dfrac{1}{\theta}\cdot\left(\begin{array}{cc}
\sin\theta & -(1-\cos\theta)\\
1-\cos\theta & \sin\theta
\end{array}\right)$ (124)

For implementation purposes, Taylor expansions should be used for $ \mathbf{V}$ when $ \theta$ is small.

The $ \ln()$ function on $ \mathrm{SE}(2)$ can be implemented by first recovering $ \theta=\ln(\mathbf{R})$ as shown in Eq. 100, then solving $ \mathbf{Vu}=\mathbf{t}$ for $ \mathbf{u}$ in closed form:


$\displaystyle A$ $\displaystyle \equiv$ $\displaystyle \dfrac{\sin\theta}{\theta}$ (125)
$\displaystyle B$ $\displaystyle \equiv$ $\displaystyle \dfrac{1-\cos\theta}{\theta}$ (126)
$\displaystyle \mathbf{V}^{-1}$ $\displaystyle =$ $\displaystyle \dfrac{1}{A^{2}+B^{2}}\left(\begin{array}{cc}
A & B\\
-B & A
\end{array}\right)$ (127)
$\displaystyle \ln\left(\begin{array}{c\vert c}
\mathbf{R} & \mathbf{t}\\
\hline \mathbf{0} & 1
\end{array}\right)$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
\mathbf{V}^{-1}\cdot\mathbf{t}\\
\theta
\end{array}\right)\in\mathrm{se(2)}$ (128)

Ethan Eade 2012-02-16