Next:
1 Introduction
Lie Groups for 2D and 3D Transformations
Ethan Eade
1
Introduction
1
.
1
Why use Lie groups for robotics or computer vision?
1
.
2
Lie algebras and other general properties
2
SO(3): Rotations in 3D space
2
.
1
Representation
2
.
2
Exponential Map
2
.
3
Adjoint
2
.
4
Jacobians
2
.
5
Gaussians in SO(3)
2
.
5
.
1
Sampling
2
.
5
.
2
Composition of uncertain rotations
2
.
5
.
3
Bayesian combination of rotation estimates
2
.
6
Extended Kalman Filtering in SO(3)
3
SE(3): Rigid transformations in 3D space
3
.
1
Representation
3
.
2
Exponential Map
3
.
3
Adjoint
3
.
4
Jacobians
4
SO(2): Rotations in 2D space
4
.
1
Representation
4
.
2
Exponential Map
4
.
3
Adjoint
5
SE(2): Rigid transformations in 2D space
5
.
1
Representation
5
.
2
Exponential Map
5
.
3
Adjoint
6
Sim(3): Similarity Transformations in 3D space
6
.
1
Representation
6
.
2
Exponential Map
6
.
3
Adjoint
7
Interpolation
8
Uncertain Transformations
8
.
1
Sampling
8
.
2
Transforming
8
.
3
Distribution of Inverse
8
.
4
Projection through Group Actions
8
.
5
Computing Moments from Samples
About this document ...
Ethan Eade 2012-02-16